Intersubjectivity of stress sensation in bicycle traffic derived from physiological measurements

1 Introduction

For the shift towards sustainable and healthy mobility to succeed, alternative transportation modes need to become more attractive. A major concern for cyclists is the perceived safety and stress level in traffic. Identifying existing stress hot-spots in the built environment is crucial for improving infrastructure. Additionally, routing applications could provide stress-minimizing routes to guide cyclists within the existing bicycle network for an optimized cycling experience.

2 Objectives

- » design and conduct case study
- » detect moments of stress (MOS) based on physiological measurements
- » derive stress index per network element: node (intersection) and edge (road)
- » evaluate intersubjectivity of stress perception among case study participants

3 Case study

- » city of Salzburg, Austria
- » four pre-defined routes (4-5 km)
- » tracking of galvanic skin response (GSR) and skin temperature using wearable sensor (Empatica E4) and geolocation (GPS)
- » survey per trip: environmental conditions, traffic and stress perception

4 Methods

A quantitative approach for assessing subjective perception of the urban environment

Automated workflow: Python and PostgreSQL/PostGIS

Case study design data acquisition plan project website survey design survey development	Data acquisition 10 participants min. routes 1 and 2 (bi-directional) camera for qualitative analysis and validation	Data preprocessing filter resample geocode import to database	Map matching identify route clip start and end node-based matching (20 m radius) exclude detours	Stress detection rise of skin conductivity followed by decline in skin temperature (Zeile et al., 2016)	Aggregation per node per edge and direction combined value per edge (e.g. for routing)	Evaluation intersubjectivity measured vs. reported stress perception
Route 1 Route 2 Route 3 Route 4 direction: Izling > City Izling Route statistics Image: Statistic Product Production Production Italiage Astern Production Italiage Astern Production Route statistics Image: Product Production Italiage Astern Production Italiage Astern Production Route statistics Image: Product Production Italiage Astern Production Italiage Astern Production Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Production Route statistics Route statistics Image: Product Production Italiage Astern Productin Ro	<image/>		 Marcal All All All All All All All All All A		Albert alb	

5 Results

- » range of stress perception intensity varies between participants (F1)
- » normalization per participant is required (range of stress perception)
- » intersubjectivity of stress perception: route 1 is percieved least stressful (F2)
- » stress hot spots: map shows spatial accumulation of moments of stress

F1: Stress events per km per trip by participant

6 Conclusion

- » stress detection algorithm proved successful, but is sensitive to pre-processing parameters
- » measured stress and reported stress (in trip survey) generally matching (F2, F3)
- » intersubjectivity in per route stress perception and spatial hot spots could be shown
- » automated processing enables fast workflow for optimization; foundation for real-time use

Future work:

- » incorporating measures for stress intensity
- » large-scale data acquisition: higher spatial and temporal coverage for more detailed insights
- » comparison with existing bikeability measures
- » routing based on stress index
- » accompanying qualitative research

References

Zeile, P., Resch, B., Loidl, M., Petutschnig, A., & Dörrzapf, L. (2016). Urban Emotions and Cycling Experience-enriching traffic planning for cyclists with human sensor data. GI_Forum 2016, 1, 204–216.

Map data: OpenStreetMap contributors

Acknowledgements

Thank you to all case study participants! Many thanks for thematic support to Dr. Bernd Resch and Dr. Martin Loidl (University of Salzburg, Z_GIS)

UNIVERSITÄT	70	
SALZBURG		

Online

Contact

Christian Werner, University of Salzburg | mail@christianwerner.at